国产色视频一区-国产色视频在线-国产色爽免费视频-国产色爽女-91av成人-91av免费

Innovative Technology · Leading the Future

Committed to Becoming a Leading International Slip Ring Supplier

Innovative Technology · Leading the Future

Committed to Becoming a Leading International Slip Ring Supplier

Innovative Technology · Leading the Future

Committed to Becoming a Leading International Slip Ring Supplier

Typical Applications

Applications of FORJ in Aerospace

The operating environment of spacecraft payload drive devices is highly unpredictable. The signals of the payload devices need to be transmitted from the rotor part to the stator part during rotation. Fiber optic rotary joints achieve signal transmission through optical non-contact methods, featuring no friction or wear, no dust generation, long lifespan, and immunity to electromagnetic interference. These characteristics make them particularly suitable for aerospace applications. When combined with electromagnetic coupling for power transmission, they enable completely contactless transmission of both power and signals, which helps improve the robustness and stability of the system.

Applications of FORJ in Maritime and Ocean Applications

Fully fiber-optic hydrophone towed arrays and underwater sonar monitoring systems convert acoustic vibrations into optical signals through highly sensitive optical coherent detection. These signals are transmitted via optical fibers to the signal processing system to extract acoustic information. This advanced underwater acoustic detection equipment integrates optics, mechanics, electronics, and acoustics, offering high sensitivity, wide dynamic range, and strong anti-noise capabilities. It has broad applications in underwater target detection, ocean environmental noise measurement, and subsea oil and mineral exploration. The system comprises vessels, towing cables, and fiber-optic hydrophone arrays, where the towing cable's ends must be connected to the vessel and hydrophone array using fiber optic rotary joints (FORJ).

Applications of FORJ in Radar Antennas

With the increasing intelligence and multifunctionality of modern radar systems, there is a growing need for data exchange between the control center and the antenna array. Optical fiber transmission, with its large capacity, meets this requirement effectively. Additionally, multistatic radar coordination and the need to avoid anti-radiation missile attacks have driven the demand for long-distance signal transmission, making optical fibers indispensable for radar signal transmission. Digital array radars consist of two parts: the array face (including antennas and digital transceivers) and the array base (which may be housed in equipment shelters or bunkers and includes systems like digital beamforming, waveform control, and timing generation). The array face requires 360° mechanical rotation, necessitating FORJ to achieve dynamic optical signal connectivity between the array face and base. Using FORJ for radar signal transmission eliminates electromagnetic interference, channel crosstalk, and enables long-distance transmission.

FORJ in Medical Applications

Optical Coherence Tomography (OCT) is a high-resolution imaging technology known as optical biopsy, offering resolutions up to 10 microns. It's the new "gold standard" for diagnosing coronary heart disease. OCT involves inserting an imaging catheter with an optical lens at its tip into blood vessels or airways, utilizing high-speed rotational scanning to assist clinicians in diagnosing the internal structure and nature of plaques. In OCT systems, the optical probe within organs like blood vessels or airways requires high-speed rotation, necessitating the use of FORJ to transmit optical signals from the probe to the optical system.

Applications of FORJ in Security Cameras

High-speed dome cameras, or speed domes, are sophisticated products combining optics, mechanics, and electronics. With the 

fast pace of urban development, these "speed domes," known for their high speed, integration, and powerful functions, are 

becoming essential in urban surveillance. Integrating FORJ in speed domes offers several advantages:

  • Immunity to electromagnetic interference
  • Long operational lifespan
  • Support for higher resolution
  • Simplified structure, enhancing product standardization

Applications of FORJ in Wind Energy and Helicopters

In wind power generation equipment, sensors must be installed on generator blades to monitor blade load, icing, and other conditions. This is to reduce asymmetric loads caused by variations in wind intensity between the top and bottom of the wind sweep area, affecting blades, drive shafts, and other key structural components. Smart fiber optic sensors, such as fiber Bragg gratings, are ideal for this application. In such cases, fiber optic rotary joints are needed to transmit the fiber optic sensing signals from the rotor components of the wind turbine to the stator components.

Applications of FORJ in Ports, Mines, and Steel Plants

Fiber optic rotary joints are widely and critically used in ports. They are primarily employed in equipment that requires continuous rotation, such as port cranes and turntable systems. By providing high-quality optical signal transmission, they ensure the stable transmission of data and control signals. Fiber optic rotary joints can adapt to the complex port environment, possess strong anti-interference capabilities, and offer high transmission bandwidth, meeting the demands of port automation and intelligence. Their excellent performance significantly enhances port loading and unloading efficiency and operational safety, providing reliable technical support for port management.

Applications of FORJ in Drones and Anti-Drone Systems

For drones, fiber optic rotary joints provide high-speed and stable data transmission during the rotation of drone cameras and sensor systems, ensuring real-time image and data transmission and processing. This enhances the monitoring and reconnaissance capabilities of drones. In anti-drone systems, fiber optic rotary joints also play a critical role, ensuring that radar and monitoring equipment can transmit signals without interference during rotation, improving the efficiency of detecting, tracking, and intercepting drones. The high bandwidth and anti-interference characteristics of fiber optic rotary joints make them indispensable in drone and anti-drone technology, significantly improving the performance and reliability of the equipment.

  • Aerospace
  • Maritime and Offshore
  • Radar Antennas
  • Medical
  • Security Cameras
  • Wind Power
  • Ports, Mining, and Steel Mills
  • Drones and Anti-Drones

SHENZHEN THREAD PHOTOELECTRIC TECHNOLOGY CO., LTD

Shenzhen Thread Optoelectronic Technology Co., Ltd. was established in 2014 and has a research and production base in Hefei (Anhui Lanxuan Photoelectric Technology Co., Ltd.). The company has a registered capital of 20 million RMB and owns a production and office space of 2000 square meters. With over 100 employees, our main products include electrical, fber optic, RF, and fuid slip rings. We hold more than 50 patents related to slip ring technology and have established a Slip Ring Technology Research Center. 

主站蜘蛛池模板: 欧美a网站 | 色中色欧美 | 成年人在线观看视频免费 | 国产日韩欧美亚洲 | 狠狠操狠狠操狠狠操 | 星空影院免费观看韩国三集 | 青春草在线免费视频 | 亚洲一区在线播放 | 亚洲欧美成人综合 | 久久激情综合色丁香 | 日韩伦理片在线观看光棍影院 | 成人在线午夜 | 一级毛片免费视频观看 | 天堂亚洲国产日韩在线看 | a亚洲va韩国va欧美va久久 | 色综合久久加勒比高清88 | 一级毛片在线观看视频 | 网站四虎1515hhcom| h动态图男女啪啪27报gif | 波多野结衣一区二区三区高清在线 | 亚洲日本va中文字幕在线不卡 | 皇色在线 | 日本韩国欧美在线 | 久久国产欧美日韩精品免费 | 99re在线视频精品 | 欧美专区一区二区三区 | 亚洲精品午夜 | 久99久热 | 毛片爱爱| 在线免费观看污视频 | 午夜夜伦鲁鲁片 | 性a爱片免费视频性 | 国产成人小视频在线观看 | 三级黄色a | 男女免费视频 | 一级做a爱过程免费视频韩国 | 日韩精品手机在线 | 国产毛片视频 | 日本一区二区视频在线观看 | 在线观看视频欧美 | 中文字幕精品在线视频 |